【摘要】针对传统人体行为识别方法系统搭建成本高、部署复杂且存在侵犯隐私等问题,提出一种使用商用Wi-Fi设备获取信道状态信息CSI进行人体行为识别与跌倒检测的方法.通过提取信道状态信息CSI中的幅度和相位特征作为基础信号,并使用功率谱熵作为新特征建立指纹库.采用基于人工鱼群算法AFSA修正的支持向量机SVM对动作进行分类识别,通过对SVM中的参数惩罚因子和核函数参数进行优化选择达到优化分类的效果.根据真实环境数据验证表明,平均识别率达到94.64%.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《广东微量元素科学》 2015-07-06
《重庆高教研究》 2015-06-26
《中外医疗》 2015-07-06
《当代体育科技》 2015-07-07
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点