中教数据库 > 云南大学学报(自然科学版) > 文章详情

一种面向大数据分析的快速并行决策树算法

更新时间:2023-05-28

【摘要】为了提高基于大规模数据的决策树训练效率,提出了一种基于Spark平台的并行决策树算法(SPDT).首先,采用数据按列分区的方法,把单个属性列完整地保留在一个分区内,使缓存该分区数据的数据节点能独立完成信息熵的计算,以减少数据节点之间的信息交流造成的网络资源的占用.然后,数据在按列分区后以稠密向量的形式缓存于内存中,SPDT对数据进行压缩,以减少对内存的占用.最后,SPDT采用基于边界点类别判定的连续属性离散化方法来处理连续属性,减少决策树训练过程中信息熵计算的频次,并提出使用信息增益比划分训练数据集的方法,以减少信息增益计算对多属性值属性的依赖.实验结果表明,在树的训练效率方面,SPDT在保持分类精度的情况下,比Apache Spark-MLlib决策树算法(MLDT)以及基于Spark平台的垂直划分决策树算法(Yggdrasil)有明显的提升.

【关键词】

294 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号